Engineering Physics: Electrostatics & Electrodynamics

Chapter 5 Electric Potential Assoc. prof. / Amr Hessein

Chapter Contents

- 1. Electric work done (w)
- 2. Electric potential energy (E_P)
- 3. Electric potential (V)
- 4. Electric potential difference (V_{ab})
- 5. Electric energy (W_{ab})
- 6. Potential and electric field
 - **1. Potential difference in front of infinite charged filament**
 - 2. Potential difference in front of infinite charged plane
 - 3. Potential difference of charged sphere

The work (W) done on an object by a force (F) is:

➢ Remarks

$$W = \int_{x_i}^{x_f} \vec{F} \cdot d\vec{x} = \int_{x_i}^{x_f} F dx \cos \theta$$

- > if $\theta = 90^{\circ} \rightarrow W = 0$, The work done by a force on a moving object is zero when the force applied is perpendicular to the object's displacement.
- Work is a scalar quantity because work is an energy transfer;
 - ✓ If energy is transferred to the system (object), <u>W is positive</u>;
 - ✓ If energy is transferred from the system, <u>W is negative</u>.

القوة المحافظة Conservative Force >

1. The work done between any two points is **independent of the path taken by the particle**.

2. The work done through any closed path is **zero**.

 $\oint \vec{F} \cdot d\vec{x} = zero$

> Examples on a **conservative force** are:

- ✓ Gravitational force
- ✓ Electrostatic force
- The work done by conservative force can always be expressed in terms of <u>change in Potential Energy (ΔU)</u>

$$W_{ab} = -\Delta U$$

القوة المحافظة Conservative Force >

$$W_{ab} = -\Delta U$$

$$W_{a\to b} = U_a - U_b = -(U_b - U_a) = -\Delta U$$

(i)
$$W_{a \to b} = +ve, \rightarrow \Delta U = -ve$$

i.e. the potential energy decreases

(ii) $W_{a \to b} = -ve, \rightarrow \Delta U = +ve$ i.e. the potential energy increases

Now, consider a central positive charge q, produce electric field E everywhere surround it and has infinite range:

$$E = K \frac{q}{r^2}$$

> W_{ab} is done by electrostatic force (q'E) exerting on q' by the field E through the path a→b.

$$W_{ab} = Kqq' \left[\frac{1}{r_a} - \frac{1}{r_b} \right]$$
 Joule

➢ It is clear that, the work don is independent on the shape of the path joined a → b but only on the radial distances of initial and final positions ($r_a \& r_b$).

So, the electric force is a Conservative Force

$$\therefore W_{ab} = Kqq' \left[\frac{1}{r_a} - \frac{1}{r_b} \right] \quad Joule$$

For similar charges, the work may positive or negative according the magnitudes of (r):

(1) If
$$r_a < r_b$$

 $W_{ab} = +ve$ The work is done by the field, and q' moves
 $away$ from q
(2) If $r_a > r_l$
 $W_{ab} = -ve$ The work is done on the field, and q'
 $W_{ab} = -ve$ The work is done on the field, and q'
moves towards from q
(3) If $r_a = r_b$,
 $W_{ab} = 0$ when q' moves on surface of the sphere. 7

> Prove that the electrostatic force is a conservative force?

 $dW = \vec{F} \cdot \vec{dL} = FdL \cos \theta$

 $dr = dL\cos\theta$

E =

$$dW = Fdr$$

> the total work don W_{ab} is:

$$W_{ab} = \int_{r_a}^{r_b} F dr = q' \int_{r_a}^{r_b} E dr$$

$$K \frac{q}{r^2}$$

طاقة الوضع الكهربي (E_P) 2. Electric potential energy

Since the electric force is a Conservative Force

$$\therefore W_{ab} = -\Delta E_p$$

$$Kqq' \left[\frac{1}{r_a} - \frac{1}{r_b} \right] = (E_p)_a - (E_p)_b$$

$$\therefore (E_p)_a = K \frac{qq'}{r_a} \qquad \& \qquad (E_p)_b = K \frac{qq'}{r_b}$$

> In general,

$$E_p = K \frac{qq'}{r} \qquad Joule$$

2. Electric potential energy (E_P)

$$E_p = K \frac{qq'}{r} \qquad Joule$$

Remarks

1. The potential energy E_p is a **shared property** of the two charges.

2. The electric potential energy is a **scalar quantity** is **positive for similar charges** and **negative for different charges**.

3. The potential energy is always defined relative to **some reference point** where $E_p = 0$

$$if \ r = \infty, \quad \rightarrow \quad E_p = zero$$

2. Electric potential energy (E_P)

(a) q and q_0 have the same sign.

(b) q and q_0 have opposite signs.

2. Electric potential energy (E_P)

If there is a system of n-charges, the total electric potential energy of q' is the algebraic sum of each potential energy of q' with each individual charge in the system

Example 2: in fig. 2 let test charge $q' = +6\mu C$ is surrounded by three charges where $q_1 = +1\mu C$, $q_2 = -2\mu C$ and $q_3 = -3\mu c$ at distances 40, 70 and 90 cm from q' respectively. Calculate the electric potential energy on q'.

$$E_p = 0.135 - 0.154 - 0.18 = -0.2 joule$$

الجهد الكهربي (V) الجهد الكهربي (C) 3. Electric potential

Electric Potential (V)

 $V = K \frac{q}{r}$

It is the potential energy per unit positive charge

So, the electric potential at point (a) distant (r) from q is:

$$V = \frac{Joule}{Coulomb} \equiv Volt (V)$$

The electric potential is scalar quantity positive for positive q and negative for negative q.

3. Electric potential (V)

If there is a system of n-charges, the electric potential at a point (a) is the algebraic sum of all potentials of that charges make at this point

$$V_{a} = V_{1} + V_{2} + \dots + V_{n}$$

$$V_{a} = (+)K \frac{q_{1}}{r_{1}} + (-)K \frac{q_{2}}{r_{2}} + (-)K \frac{q_{3}}{r_{2}} + \dots + K \frac{q_{n}}{r_{n}}$$

$$V_{a} = \sum_{i=1}^{n} K \frac{q_{i}}{r_{i}}$$

$$V_{a} = \sum_{i=1}^{n} K \frac{q_{i}}{r_{i}}$$

If any charge q' is placed at point (a), it will have an electric potential energy (E_p) equals:

$$E_p = q' V_a$$

Example 3: Let point a is surrounded by three charges where $q_1 = +1\mu C$, $q_2 = -2\mu C$ and $q_3 = -3\mu C$ at distances 40, 70 and 90 cm from it respectively. Calculate the electric potential at point a. If charge $+6\mu C$ is placed at point a calculate the subjected electric potential energy

Solution

$$V_{a} = K \frac{q_{1}}{r_{1}} + K \frac{q_{2}}{r_{2}} + K \frac{q_{3}}{r_{2}}$$
$$V_{a} = 9 \times 10^{9} \frac{1 \times 10^{-6}}{0.4m} - 9 \times 10^{9} \frac{2 \times 10^{-6}}{0.7m} - 9 \times 10^{9} \frac{3 \times 10^{-6}}{0.9m}$$

$$V_a = 22500V - 25714V - 30000V = -33214V$$

To calculate the potential energy E_p on charge +6µC palced at a

$$E_p = q'V = +6 \times 10^{-6} C \times (-33214 V) = -0.2$$
 Joule

4. Electric potential difference (V_{ab})

There are different magnitudes of potential V because different distance r from the central charge q or distance from source of field

$$V_a = K \frac{q}{r_a}$$
 and $V_b = K \frac{q}{r_b}$

> The quantity ($V_a - V_b$) is called potential difference V_{ab} between points a and b:

$$V_{ab} = V_a - V_b = K \frac{q}{r_a} - K \frac{q}{r_b}$$

> If $r_a = r_b$ for spherical surface;

$$V_{ab} = V_a - V_b = 0$$

This surface is called Equipotential surface.

4. Electric potential difference (V_{ab})

سطح متساوي الجهد الكهربي Equipotential Surface >

It is the surface at which the potential has the same value at all points on the surface.

No net work W is done on a charged particle by an electric field when the particle moves between two points on the same equipotential surface.

5. Electric Energy (W_{ab})

> The electric potential difference (V_{ab}) between two points

Is the quantity of work or energy gained per unit charge when transfer between them.

$$V_{ab} = \frac{W_{ab}}{q'}$$

The electric energy (W_{ab}) is the quantity of energy responsible for motion of electric charge between two points a and b in an electric field.

$$W_{ab} = q'(V_a - V_b) = q'V_{ab}$$

If the electric energy is converted to kinetic energy:

Kientic Energy
$$(K, E) = W_{ab} = q'V_{ab} = q'(V_a - V_b)$$

5. Electric Energy (W_{ab})

 \succ If q'= e and V_{ab} =1 Volt

$$K.E = 1.6 \times 10^{-19}C \times 1V = 1.6 \times 10^{-19}$$
 Joule = 1 eV

Electron – volt (eV) =
$$1.6 \times 10^{-19}$$
 Joule

Electron-volt

is the quantity of kinetic energy gained by an electron when accelerated through a potential difference of one volt.

eV usually used to measure the energy of small particles: e.g. electrons, protons,

> The electric power (P) is the time rate of doing a work

$$P = \frac{dW_{ab}}{dt} \text{ Joules/s} \equiv \text{Watt (W)}$$

$$P = \frac{d(q'V_{ab})}{dt} = V_{ab} \frac{dq'}{dt} \qquad P = V_{ab}I \qquad I = \frac{dq'}{dt}, \text{ is the electric current }_{20}$$

Example 4: A 20 gm of mass carry positive charge 50 μ C transfer between two pints of potential difference 220 V. Calculate the (a) the gained kinetic energy (b) the work done per unit charge (c) velocity of transferring

Solution

(a) The gained kinetic energy

Kinetic energy $K.E = q'V_{ab} = 50 \times 10^{-6} \times 220 = 0.011$ *Joule*

(b) the work done per unit charge is the same potential difference = 220V(c) The velocity v is calculate from kinetic energy

$$v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2 \times 0.011 \, J}{20 \times 10^{-3} \, Kg}} = 1.04 \, m/s$$

6. Potential and Electric Field

> There is a relation between electric field intensity and potential difference:

The electric field can be found from the potential difference as:

$$\vec{E} = -\frac{dV}{dr}$$

$$\frac{V/m \equiv N/C}{V/m}$$

dV dr

 \rightarrow is called **the potential gradient**

The negative (-ve) sign because the direction of E is usually in a direction of decreasing V with r

V decreases

as you move

outward

V increases

as you mov

 $-\vec{E}$

inward.

Potential difference in front of infinite charged filament

- Find the potential difference between two points (a & b) in front of an infinite charged filament?
- the electric field intensity (E) due to charged infinite filaments is:

 $E=\frac{2K\lambda}{r}$

> So,

$$V_{ab} = \int_{r_a}^{r_b} E dr = 2K\lambda \int_{r_a}^{r_b} \frac{dr}{r}$$

$$V_{ab} = 2K\lambda[\ln r]_{r_a}^{r_b} = 2K\lambda[\ln r_b - \ln r_a]$$

$$V_{ab} = 2K\lambda \ln\left(\frac{r_b}{r_a}\right)$$

$$\succ$$
 If $r_b > r_a \rightarrow V_{ab} = +ve \text{ or } \frac{V_a > V_b}{V_b}$, and vice versa

Potential difference in front of infinite charged plane

Find the potential difference between two points (a & b) in front of an infinite charged plane?

$$V_{ab} = \int_{r_a}^{r_b} E dr$$

> The electric field of the plane is uniform and equals to E

$$V_{ab} = E \int_{r_a}^{r_b} dr$$
$$V_{ab} = E(r_b - r_a) = Ed$$
$$V_{ab} = Ed$$

(A) If the charged sphere is conducting

(i) If two points (a & b) are <u>inside</u> the sphere

$$E = \mathbf{0} \rightarrow V_{ab} = \mathbf{0}$$

$$V_{a} = V_{b}$$

$$V_{inside} = V_{surface} = K \frac{q}{R}$$
Constant value

(*ii*) If the two points <u>outside</u> the sphere r>R

$$E = K \frac{q}{r^2}$$
$$V_{ab} = Kq \int_{r_a}^{r_b} \frac{dr}{r^2}$$

$$V_{ab} = Kq \left[\frac{1}{r_a} - \frac{1}{r_b}\right]$$

(A) If the charged sphere is conducting

(i) If two points (a & b) are inside the sphere

$$V_{inside} = V_{surface} = K \frac{q}{R}$$

(ii) If the two points outside the sphere r>R

$$V_{ab} = Kq \left[\frac{1}{r_a} - \frac{1}{r_b}\right]$$

26

(B) If the charged sphere is non-conducting

(i) If two points (a & b) are inside the sphere

$$E = K \frac{qr}{R^3}$$

$$V_{ab} = K \frac{q}{R^3} \int_{r_a}^{r_b} r dr$$

$$V_{ab} = K \frac{q}{2R^3} (r_b^2 - r_a^2)$$

(ii) If the two points outside the sphere r > R $E = K \frac{q}{r^2}$

$$V_{ab} = Kq \left[\frac{1}{r_a} - \frac{1}{r_b}\right]$$

(B) If the charged sphere is non-conducting

(i) If two points (a & b) are inside the sphere

$$V_{ab} = K \frac{q}{2R^3} (r_b^2 - r_a^2)$$

(ii) If the two points outside the sphere r>R

$$V_{ab} = Kq \left[\frac{1}{r_a} - \frac{1}{r_b}\right]$$

28

Non-conducting

 $\mathbf{E}_{E=K\frac{qr}{r^2}}$

r<R r=R

r<R r=R

 $\bigwedge V_o = K \frac{3q}{2p}$

 $E = K \frac{q}{R^2}$

 $V_s = K \frac{q}{R}$

 $E = K \frac{q}{(R+x)^2}$

r>R

 $V = K \frac{q}{R+x}$

r>R

